Optimal 6-State Algorithms for the Behavior of Several Moving Creatures
نویسندگان
چکیده
The goal of our investigation is to find automatically the absolutely best rule for a moving creature in a cellular field. The task of the creature is to visit all empty cells with a minimum number of steps. We call this problem creature’s exploration problem. The behaviour was modelled using a variable state machine represented by a state table. Input to the state table is the current state and the neighbour’s state in front of the creature’s moving direction. The problem is that the search space for the possible rules grows exponentially with the number of states, inputs and outputs. We could solve the problem for six states, two inputs and two outputs with the aid of a parallel hardware platform (FPGA technology). The set of all possible n-state algorithms was first reduced by discarding equivalent, reducible and not strongly connected ones. The algorithms which showed a certain performance for five initial configurations during simulation were extracted by the hardware and send to the host PC. Additional tests for robustness and the behaviour of several creatures was carried out in software. One creature with the best algorithm can visit 99.92 % of the empty cells of 26 test configurations. Several creatures up to 16 can perform the task more efficiently for the tested initial configuration.
منابع مشابه
Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملPMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver
In this paper, optimal placement of Phasor Measurement Unit (PMU) using Global Positioning System (GPS) is discussed. Ant Colony Optimization (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modifi...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملA Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand
Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...
متن کاملDesigning an Optimal Stable Algorithm for Robot Swarm Motion toward a Target
In this paper, an optimal stable algorithm is presented for members of a robots swarm moving toward a target. Equations of motion of the swarm are based on Lagrangian energy equations. Regarding of similar research On the design of swarm motion algorithm, an equation of motion considered constraints to guarantee no collision between the members and the members and obstacles along the motion pat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006